[Nanotechnology] [Unbounding TOC]

Unbounding the Future:
the Nanotechnology Revolution

Chapter 1

Looking Forward

The Japanese professor and his American visitor paused in the rain to look at a rising concrete structure on a university campus in the Tokyo suburbs near Higashikoganei Station. "This is for our Nanotechnology Center," Professor Kobayashi said. The professor's guest complimented the work as he wondered to himself, when would an American professor be able to say the same?

This Nanotechnology Center was being built in the spring of 1990, as Eric Drexler was midway through a hectic eight-day trip, giving talks on nanotechnology to researchers and seeing dozens of university and consortium research laboratories. A Japanese research society had sponsored the trip, and the Ministry of International Trade and Industry MITI) had organized a symposium around the visit—a symposium on molecular machines and nanotechnology. Japanese research was forging ahead, aiming to develop "new modes of science and technology in harmony with nature and human society," a new technology for the twenty-first century.

There is a view of the future that doesn't fit with the view in the newspapers. Think of it as an alternative, a turn in the road of future history that leads to a different world. In that world, cancer follows polio, petroleum follows whale oil, and industrial technology follows chipped flint—all healed or replaced. Old problems vanish, new problems appear: down the road are many alternative worlds, some fit to live in, some not. We aim to survey this road and the alternatives, because to arrive at a world fit to live in, we will all need a better view of the open paths.

How does one begin to describe a process that can replace the industrial system of the world? Physical possibilities, research trends, future technologies, human consequences, political challenges: this is the logical sequence, but none of these makes a satisfactory starting point. The story might begin with research at places like IBM, Du Pont, and the ERATO projects at Tsukuba and RIKEN, but this would begin with molecules, seemingly remote from human concerns. At the core of the story is a kind of technology—"molecular nanotechnology" or "molecular manufacturing"—that appears destined to replace most of technology as we know it today, but it seems best not to begin in the middle. Instead, it seems best to begin with a little of each topic, briefly sketching consequences, technologies, trends, and principles before diving into whole chapters on one aspect or another. This chapter provides those sketches and sets the stage for what follows.

All this can be read as posing a grand "What if?" question: What if molecular manufacturing and its products replace modern technology? If they don't, then the question merely invites an entertaining and mind-stretching exercise. But if they do, then working out good answers in advance may tip the balance in making decisions that determine the fate of the world. Later chapters will show why we see molecular manufacturing as being almost inevitable, yet for now it will suffice if enough people give enough thought to the question "What if?"

A Sketch of Technologies

Molecular nanotechnology: Thorough, inexpensive control of the structure of matter based on molecule-by-molecule control of products and byproducts; the products and processes of molecular manufacturing.

Technology-as-we-know-it is a product of industry, of manufacturing and chemical engineering. Industry-as-we-know-it takes things from nature—ore from mountains, trees from forests—and coerces them into forms that someone considers useful. Trees become lumber, then houses. Mountains become rubble, then molten iron, then steel, then cars. Sand becomes a purified gas, then silicon, then chips. And so it goes. Each process is crude, based on cutting, stirring, baking, spraying, etching, grinding, and the like.

Trees, though, are not crude: To make wood and leaves, they neither cut, grind, stir, bake, spray, etch, nor grind. Instead, they gather solar energy using molecular electronic devices, the photosynthetic reaction centers of chloroplasts. They use that energy to drive molecular machines—active devices with moving parts of precise, molecular structure—which process carbon dioxide and water into oxygen and molecular building blocks. They use other molecular machines to join these molecular building blocks to form roots, trunks, branches, twigs, solar collectors, and more molecular machinery. Every tree makes leaves, and each leaf is more sophisticated than a spacecraft, more finely patterned than the latest chip from Silicon Valley. They do all this without noise, heat, toxic fumes, or human labor, and they consume pollutants as they go. Viewed this way, trees are high technology. Chips and rockets aren't.

Trees give a hint of what molecular nanotechnology will be like, but nanotechnology won't be biotechnology because it won't rely on altering life. Biotechnology is a further stage in the domestication of living things. Like selective breeding, it reshapes the genetic heritage of a species to produce varieties more useful to people. Unlike selective breeding, it inserts new genes. Like biotechnology—or ordinary trees—molecular nanotechnology will use molecular machinery, but unlike biotechnology, it will not rely on genetic meddling. It will be not an extension of biotechnology, but an alternative or a replacement.

Molecular nanotechnology could have been conceived and analyzed—though not built—based on scientific knowledge available forty years ago. Even today, as development accelerates, understanding grows slowly because molecular nanotechnology merges fields that have been strangers: the molecular sciences, working at the threshold of the quantum realm, and mechanical engineering, still mired in the grease and crudity of conventional technology. Nanotechnology will be a technology of new molecular machines, of gears and shafts and bearings that move and work with parts shaped in accord with the wave equations at the foundations of natural law. Mechanical engineers don't design molecules. Molecular scientists seldom design machines. Yet a new field will grow—is growing today—in the gap between. That field will replace both chemistry as we know it and mechanical engineering as we know it. And what is manufacturing today, or modern technology itself, but a patchwork of crude chemistry and crude machines?

Chapter 2 will paint a concrete picture of molecular machines and molecular manufacturing, but for now analogy will serve. Picture an automated factory, full of conveyor belts, computers, rollers, stampers, and swinging robot arms. Now imagine something like that factory, but a million times smaller and working a million times faster, with parts and workpieces of molecular size. In this factory, a "pollutant" would be a loose molecule, like a ricocheting bolt or washer, and loose molecules aren't tolerated. In many ways, the factory is utterly unlike a living cell: not fluid, flexible, adaptable, and fertile, but rigid, preprogrammed and specialized. And yet for all of that, this microscopic molecular factory emulates life in its clean, precise molecular construction.

Advanced molecular manufacturing will be able to make almost anything. Unlike crude mechanical and chemical technologies, molecular manufacturing will work from the bottom up, assembling intricate products from the molecular building blocks that underlie everything in the physical world.

Nanotechnology will bring new capabilities, giving us new ways to make things, heal our bodies, and care for the environment. It will also bring unwelcome advances in weaponry and give us yet more ways to foul up the world on an enormous scale. It won't automatically solve our problems: even powerful technologies merely give us more power. As usual, we have a lot of work ahead of us and a lot of hard decisions to make if we hope to harness new developments to good ends. The main reason to pay attention to nanotechnology now, before it exists, is to get a head start on understanding it and what to do about it.

A Sketch of Consequences

The United States has become famous for its obsession with the next year's elections and the next quarter's profits, and the future be damned. Nonetheless, we are writing for normal human beings who feel that the future matters–ten, twenty, perhaps even thirty years from now—for people who care enough to try to shift the odds for the better. Making wise choices with an eye to the future requires a realistic picture of what the future can hold. What if most pictures of the future today are based on the wrong assumptions?

Here are a few of today's common assumptions, some so familiar that they are seldom stated:

These all depend on a more basic assumption:

Some further common assumptions:

These, too, depend on a more basic assumption:

These commonplace assumptions paint a future full of terrible dilemmas, and the notion that a technological change will let us escape from them smacks of the idea that some technological fix can save the industrial system. The prospect, though, is quite different: The industrial system won't be fixed, it will be junked and recycled. The prospect isn't more industrial wealth ripped from the flesh of the Earth, but green wealth unfolding from processes as clean as a growing tree. Today, our industrial technologies force us to choose better quality or lower cost or greater safety or a cleaner environment. Molecular manufacturing, however, can be used to improve quality and lower costs and increase safety and clean the environment. The coming revolutions in technology will transcend many of the old, familiar dilemmas. And yes, they will bring fresh, equally terrible dilemmas.

Molecular nanotechnology will bring thorough and inexpensive control of the structure of matter. We need to understand molecular nanotechnology in order to understand the future capabilities of the human race. This will help us see the challenges ahead, and help us plan how best to conserve values, traditions, and ecosystems through effective policies and institutions. Likewise, it can help us see what today's events mean, including business opportunities and possibilities for action. We need a vision of where technology is leading because technology is a part of what human beings are, and will affect what we and our societies can become.

The consequences of the coming revolutions will depend on human actions. As always, new abilities will create new possibilities both for good and for ill. We will discuss both, focusing on how political and economic pressures can best be harnessed to achieve good ends. Our answers will not be satisfactory, but they are at least a beginning.

A Sketch of Trends

Technology has been moving toward greater control of the structure of matter for millennia. For decades, microtechnology has been building ever-smaller devices, working toward the molecular size scale from the top down. For a century or more, chemistry has been building ever-larger molecules, working up toward molecules large enough to serve as machines. The research is global, and the competition is heating up.

Since the concept of molecular nanotechnology was first laid out, scientists have developed more powerful capabilities in chemistry and molecular manipulation (see Chapter 4). There is now a better picture of how those capabilities can come together in the next steps (see Chapter 5), and of how advanced molecular manufacturing can work (see Chapter 6). Nanotechnology has arrived as an idea and as a research direction, though not yet as a reality.

Naturally occurring molecular machines exist already. Researchers are learning to design new ones. The trend is clear, and it will accelerate because better molecular machines can help build even better molecular machines. By the standards of daily life, the development of molecular nanotechnology will be gradual, spanning years or decades, yet by the ponderous standards of human history it will happen in an eyeblink. In retrospect, the wholesale replacement of twentieth-century technologies will surely be seen as a technological revolution, as a process encompassing a great breakthrough.

Today, we live in the end of the pre-breakthrough era, with pre-breakthrough technologies, hopes, fears, and preoccupations that often seem permanent, as did the Cold War. Yet it seems that the breakthrough era is not a matter for some future generation, but for our own. These developments are taking shape right now, and it would be rash to assume that their consequences will be many years delayed.

In later chapters, we'll say more about what researchers are doing today, about where their work is leading, and about the problems and choices ahead. To get a sense of the consequences, though, requires a picture of what nanotechnology can do. This can be hard to grasp because past advanced technologies–microwave tubes, lasers, superconductors, satellites, robots, and the like–have come trickling out of factories, at first with high price tags and narrow applications. Molecular manufacturing, though, will be more like computers: a flexible technology with a huge range of applications. And molecular manufacturing won't come trickling out of conventional factories as computers did: it will replace factories and replace or upgrade their products. This is something new and basic, not just another twentieth-century gadget. It will arise out of twentieth-century trends in science, but it will break the trend-lines in technology, economics, and environmental affairs.

Calculators were once thousand-dollar desktop clunkers, but microelectronics made them fast and efficient, sized to a child's pocket and priced to a child's budget. Now imagine a revolution of similar magnitude, but applied to everything else.

More Consequences: Scenes from a Post-breakthrough World

What nanotechnology will mean for human life is beyond our predicting, but a good way to understand what it could mean is to paint scenarios. A good scenario brings together different aspects of the world (technologies, environments, human concerns) into a coherent whole. Major corporations use scenarios to help envision the paths that the future may take–not as forecasts, but as tools for thinking. In playing the "What if?" game, scenarios present trial answers and pose new questions.

The following scenarios can't represent what will happen, because no one knows. They can, however, show how post-breakthrough capabilities could mesh with human life and Earth's environment. The results will likely seem quaintly conservative from a future perspective, however much they seem like science fiction today. The issues behind these scenarios will be discussed in later chapters.

Scenario: Solar Energy

In Fairbanks, Alaska, Linda Hoover yawns and flips a switch on a dark winter morning. The light comes on, powered by stored solar electricity. The Alaska oil pipeline shut down years ago, and tanker traffic is gone for good.

Nanotechnology can make solar cells efficient, as cheap as newspaper, and as tough as asphalt–tough enough to use for resurfacing roads, collecting energy without displacing any more grass and trees. Together with efficient, inexpensive storage cells, this will yield low-cost power (but no, not "too cheap to meter"). Chapter 9 discusses prospects for energy and the environment in more depth.

Scenario: Medicine that Cures

Sue Miller of Lincoln, Nebraska, has been a bit hoarse for weeks, and just came down with a horrid head cold. For the past six months, she's been seeing ads for At Last!: the Cure for the Common Cold, so she spends her five dollars and takes the nose-spray and throat-spray doses. Within three hours, 99 percent of the viruses in her nose and throat are gone, and the rest are on the run. Within six hours, the medical mechanisms have become inactive, like a pinch of inhaled but biodegradable dust, soon cleared from the body. She feels much better and won't infect her friends at dinner.

The human immune system is an intricate molecular mechanism, patrolling the body for viruses and other invaders, recognizing them by their foreign molecular coats. The immune system, though, is slow to recognize something new. For her five dollars, Sue bought 10 billion molecular mechanisms primed to recognize not just the viruses she had already encountered, but each of the five hundred most common viruses that cause colds, influenza, and the like.

Weeks have passed, but the hoarseness Sue had before her cold still hasn't gone away; it gets worse. She ignores it through a long vacation, but once she's back and caught up, Sue finally goes to see her doctor. He looks down her throat and says, "Hmmm." He asks her to inhale an aerosol, cough, spit in a cup, and go read a magazine. The diagnosis pops up on a screen five minutes after he pours the sample into his cell analyzer. Despite his knowledge, his training and tools, he feels chilled to read the diagnosis: a malignant cancer of the throat, the same disease that has cropped up all too often in his own mother's family.

He touches the "Proceed" button. In twenty minutes, he looks at the screen to check progress. Yes, Sue's cancerous cells are all of one basic kind, displaying one of the 16,314 known molecular markers for malignancy. They can be recognized, and since they can be recognized, they can be destroyed by standard molecular machines primed to react to those markers. The doctor instructs the cell analyzer to prime some "immune machines" to go after her cancer cells. He tests them on cells from the sample, watches, and sees that they work as expected, so he has the analyzer prime up some more.

Sue puts the magazine down and looks up. "Well, Doc, what's the word?" she asks.

"I found some suspicious cells, but this should clear it up," he says. He gives her a throat spray and an injection. "I'd like you to come back in three weeks, just to be sure."

"Do I have to?" she asks.

"You know," he lectures her, "we need to make sure it's gone. You really shouldn't let things like this go so far before coming in."

"Yes, fine, I'll make the appointment," she says. Leaving the office, Sue thinks fondly of how old-fashioned and conservative Dr. Fujima is.

The molecular mechanisms of the immune system already destroy most potential cancers before they grow large enough to detect. With nanotechnology, we will build molecular mechanisms to destroy those that the immune system misses. Chapter 10 discusses medical nanotechnologies in more depth.

Scenario: Cleansing the Soil

California Scout Troop 9731 has hiked for six days, deep in the second-wilderness forests of the Pacific Northwest.

"I bet we're the first people ever to walk here," says one of the youngest scouts.

"Well, maybe you're right about walking," says Scoutmaster Jackson, "but look up ahead–what do you see, scouts?"

Twenty paces ahead runs a strip of younger trees, stretching left and right until it vanishes among the trunks of the surrounding forest.

"Hey, guys! Another old logging road!" shouts an older scout. Several scouts pull probes from their pockets and fit them to the ends of their walking sticks. Jackson smiles: It's been ten years since a California troop found anything this way, but the kids keep trying.

The scouts fan out, angling their path along the scar of the old road, poking at the ground and watching the readouts on the stick handles. Suddenly, unexpectedly, comes a call: "I've got a signal! Wow–I've got PCBs!"

In a moment, grinning scouts are mapping and tracing the spill. Decades ago, a truck with a leaking load of chemical waste snuck down the old logging road, leaving a thin toxic trail. That trail leads them to a deep ravine, some rusted drums, and a nice wide patch of invisible filth. The excitement is electrifying.

Setting aside their maps and orienteering practice, they unseal a satellite locator to log the exact latitude and longitude of the site, then send a message that registers their cleanup claim on the ravine. The survey done, they head off again, eagerly planning a return trip to earn the now-rare Toxic Waste Cleanup Merit Badge.

Today, tree farms are replacing wilderness. Tomorrow, the slow return to wilderness may begin, when nature need no longer be seen as a storehouse of natural resources to be plundered. Chapter 9 will discuss just how little need be taken from nature to provide humans with wealth, and how post-breakthrough technologies can remove from nature the toxic residues of twentieth-century mistakes.

Scenario: Pocket Supercomputers

At the University of Michigan, Joel Gregory grabs a molecular rod with both hands and twists. It feels a bit weak, and a ripple of red reveals too much stress in a strained molecular bond halfway down its length. He adds two atoms and twists the rod again: all greens and blues, much better. Joel plugs the rod into the mechanical arm he's designing, turns up the temperature, and sets the whole thing in motion. A million atoms dance in thermal vibration, gears spin, and the arm swings to and fro in programmed motion. It looks good. A few parts are still mock-ups, but doing a thesis takes time, and he'll work out the rest of the molecular details later. Joel strips off the computer display goggles and gloves and blinks at the real world. It's time for a sandwich and a cup of coffee. He grabs the computer itself, stuffs it into his pocket, and heads for the student center.

Researchers already use computers to build models of molecules, and "virtual reality systems" have begun to appear, enabling a user to walk around the image of a molecule and "touch" it, using computer-controlled gloves and goggles. We can't build a supercomputer able to model a million-atom machine yet–much less build a pocket supercomputer–but computers keep shrinking in size and cost. With nanotechnology to make molecular parts, a computer like Joel's will become easy to build. Today's supercomputers will seem like hand-cranked adding machines by comparison. Chapters 2 and 3 take a closer look at a simulated molecular world.

Scenario: Global Wealth

Behind a village school in the forest a stone's throw from the Congo River, a desktop computer with a thousand times the power of an early 1990s supercomputer lies half-buried in a recycling bin. Indoors, Joseph Adoula and his friends have finished their day's studies; now they are playing together in a vivid game universe using personal computers each a million times more powerful than the clunker in the trash. They stay late in air-conditioned comfort.

Trees use air, soil, and sunlight to make wood, and wood is cheap enough to burn. Nanotechnology can do likewise, making products as cheap as wood–even products like supercomputers, air conditioners, and solar cells to power them. The resulting economics may even keep tropical forests from being burned. Chapter 7 will discuss how costs can fall low enough to make material wealth for the Third World easy to achieve.

Scenario: Cleansing the Air

In Earth's atmosphere, the twentieth-century rise in carbon-dioxide levels has halted and reversed. Fossil fuels are obsolete, so pollution rates have lessened. Efficient agriculture has freed fertile land for reforestation, so growing trees are cleansing the atmosphere. Surplus solar power from the world's repaved roads is being used to break down excess carbon dioxide at a rate of 5 billion tons per year. Climates are returning to normal, the seas are receding to their historical shores, and ecosystems are beginning the slow process of recovery. In another twenty years, the atmosphere will be back to the pre-industrial composition it had in the year 1800.

Chapter 9 will discuss environmental cleanup, from reducing the sources to cleaning up the messes already in place.

Scenario: Transportation Outward

Jim Salin's afternoon flight from Dulles International is on the ground, late for departure. Impatiently, Jim checks the time: any later, and he'll miss his connecting flight.

At last, the glassy-surfaced craft rolls down the runway. With gliderlike wings, it lifts its fat body and climbs steeply toward the east. A few pages into his novel, Jim is interrupted by a second recitation of safety instructions and the captain's announcement that they'll try to make up for lost time. Jim settles back in his seat as the main engines kick in, the wings retract, the acceleration builds, and the sky darkens to black. Like the highest-performance rockets of the 1980s, Jim's liner produces an exhaust of pure water vapor. Spaceflight has become clean, safe, and routine. And every year, more people go up than come down.

The cost of spaceflight is mostly the cost of high-performance, reliable hardware. Molecular manufacturing will make aerospace structures from nearly flawless, superstrong materials at low cost. Add inexpensive fuel, and space will become more accessible than the other side of the ocean is today. Chapter 8 discusses the prospects for opening the world beyond Earth.

Scenario: Restoring Species

Restoration Day Ceremonies are always moving events. For some reason, the old people always cry, even though they say they're happy.

Crying, Tracy Stiegler thinks, doesn't make any sense. She looks again through the camouflage screen over the sandy Triangle Keys beach, gazing across the Caribbean toward the Yucatán Peninsula. Soon this will be theirs again, and that's all to the good.

Tracy and the other scientists from BioArchive have positions of honor in today's Restoration Day Ceremony. Since the mid-twentieth century there had been no living Caribbean monk seals, only grisly relics of the years of their slaughter: seal furs and dry museum specimens. Tracy's team struggled for years, gathering these relics and studying them with molecular instruments. It had been known for decades—since the 1980s—that genes are tough enough to survive in dried skin, bone, horn, and eggshell. Tracy's team had collected genes and rebuilt cells.

They worked for years, and gave thanks to the strict protection—late, but good enough—that saved one related species. At last, a Hawaiian monk seal had given birth to a genetically-pure Caribbean monk seal, twin to a seal long dead. And now there were five hundred, some young, some middle-aged, with decent genetic diversity and five years' experience living in the confines of a coastal ecological station.

Today, with raucous voices, they are moving out into the world to reclaim their ecological niche. As Tracy watches, she thinks of the voices that will never be heard again: of the species, known and unknown, that left not a even a bloody scrap to be cherished and restored. Thousands (millions?) of species had simply been brushed into extinction as habitats were destroyed by farming and logging. People knew–for years they had known–that freezing or drying would save genes. And they knew of the ecological destruction, and they knew they weren't stopping it. And the ignorant bastards didn't even keep samples.

Tracy discovers that she, too, cries at Restoration Day Ceremonies.

People will surely push biomedical applications of nanotechnology far and fast for human health-care. With a bit more pushing, this technology base will be good enough to restore some species now thought lost forever, to repair some of the damage human beings have done to the web of life. It would be better to preserve ecosystems and species intact, but restoration, even of a few species, will be far better than nothing. Some samples from endangered species are being kept today, but not enough, and mostly for the wrong reasons. Chapter 9 will take a closer look at ecosystem restoration, and what future prospects mean for action taken today.

Scenario: An Unstable Arms Race

Disputes over technology development and trade had soured relationships between Singapore and the Japan-United States alliance. Diplomatic inquiries regarding peculiar seismic and sonar readings in the South China Sea had just begun when they suddenly became irrelevant: an estimated one billion tons of unfamiliar, highly-automated military hardware appeared in coastal waters around the world. Accusations began to fly between Congress and PeaceWatch personnel: "If you'd done your jobs—" "If you'd let us do our jobs—"

And so, in late February, Singapore emerged as a military superpower.

Low cost, high quality, high-speed production can be applied to many purposes, not all attractive. Nanotechnology has enormous potential for abuse.

Technologies Revisited

Molecules matter because matter is made of molecules, and everything from air to flesh to spacecraft is made of matter. When we learn how to arrange molecules in new ways, we can make new things, and make old things in new ways. Perhaps this is why Japan's MITI has identified "control technologies for the precision arrangement of molecules" as a basic industrial technology for the twenty-first century. Molecular nanotechnology will give thorough control of matter on a large scale at low cost, shattering a whole set of technological and economic barriers more or less at one stroke.

A molecule is an object consisting of a collection of atoms held together by strong bonds (one-atom molecules are a special case). "Molecule" usually refers to an object with a number of atoms small enough to be counted (a few to a few thousand), but strictly speaking a truck tire (for instance) is mostly one big molecule, containing something like 1,000,000,000,000,000,000,000,000,000 atoms. Counting this many atoms aloud would take about 10,000,000,000 billion years.

Scientists and engineers still have no direct, convenient way to control molecules, basically because human hands are about 10 million times too large. Today, chemists and materials scientists make molecular structures indirectly, by mixing, heating, and the like. The idea of nanotechnology begins with the idea of a molecular assembler, a device resembling an industrial robot arm but built on a microscopic scale. A general-purpose molecular assembler will be a jointed mechanism built from rigid molecular parts, driven by motors, controlled by computers, and able to grasp and apply molecular-scale tools. Molecular assemblers can be used to build other molecular machines–they can even build more molecular assemblers. Assemblers and other machines in molecular manufacturing systems will be able to make almost anything, if given the right raw materials. In effect, molecular assemblers will provide the microscopic "hands" that we lack today. (Chemists are asked to forgive this literary license; the specific details of molecular binding and bonding don't change the conclusion.)

Nanotechnology will give better control of molecular building blocks, of how they move and go together to form more complex objects. Molecular manufacturing will make things by building from the bottom up, starting with the smallest possible building blocks. The nano in nanotechnology comes from nanos, the Greek word for dwarf. In science, the prefix nano- means one-billionth of something, as in nanometer and nanosecond, which are typical units of size and time in the world of molecular manufacturing. When you see it tacked onto the name of an object, it means that the object is made by patterning matter with molecular control: nanomachine, nanomotor, nanocomputer. These are the smallest, most precise devices that make sense based on today's science.

(Be cautious of other usages, though—some researchers have begun to use the nano- prefix to refer to other small-scale technologies in the laboratory today. In this book nanotechnology means the precise, molecular nanotechnology of the future. British usage also applies the term to the small-scale and high precision technologies of today—even to precision grinding and measurement. The latter are useful, but hardly revolutionary.)

Digital electronics brought an information-processing revolution by handling information quickly and controllably in perfect, discrete pieces: bits and bytes. Likewise, nanotechnology will bring a matter-processing revolution by handling matter quickly and controllably in perfect, discrete pieces: atoms and molecules. The digital revolution has centered on a device able to make any desired pattern of bits: the programmable computer. Likewise, the nanotechnological revolution will center on a device able to make (almost) any desired pattern of atoms: the programmable assembler. The technologies that plague us today suffer from the messiness and wear of an old phonograph record. Nanotechnology, in contrast, will bring the crisp, digital perfection of a compact disc.

A Road Map

The next two sections say a bit more about why nanotechnology is already worth your attention and about whether it's possible to understand anything about the future. Later chapters answer questions like the following:

In a democratic society, only a few people need an in-depth understanding of how a technology works, but many people need to understand what it can do. In the next chapter, we'll lead off by describing the molecular world and how it works–after all, everything around us and inside us is made of molecules—but the main story is about what this technology will mean for human beings and the biosphere.

Why Talk About It?

It is these concerns–the implications of nanotechnology for our lives, the environment, and the future–that guided the writing of this book. Nanotechnology can bring great achievements and solve great problems, but it will likewise present opportunities for enormous abuse. Research progress is necessary, but so is an informed and cautious public.

Our motivation in presenting these ideas is as much a fear of potential harm, and a wish to avoid it, as a longing for the potential good and a wish to seek it. Even so, we will dwell on the good that nanotechnology can bring and give only an outline of the obvious potential harm. The coming revolution can best be managed by people who share not only a picture of what they wish to avoid, but of what they can achieve. If we as a society have a clear view of a route to follow, we won't need a precise catalog of every cliff and mine field to the side of the road.

Some will hear this emphasis and call us optimistic. But would it really be wise to dwell on exactly how a technology can be abused? Or to draw up blueprints, perhaps?

Still, sitting here, preparing to tell this story, is an uncomfortable place for a researcher to be. In his book How Superstition Won and Science Lost, historian John C. Burnham tells of the century-long retreat of scientists from what they once saw as their responsibility: presenting the content and methods of science to a broad audience, for the public good. Today, the culture of science takes a dim view of "popularization." If you can write in plain English, this is taken as evidence that you can't do math, and vice versa. Robert Pool, a member of the news staff of the most prestigious American scientific journal, Science, acknowledges this negative attitude in writing that "some researchers, either by choice or just by being in the wrong place at the wrong time, make it into the public eye." So how can a researcher keep out of trouble? If you stumble on something important, wrap it in jargon. If people realize that it's important, run and hide. Robert Pool gently urges scientists to become more involved, but the social pressures in the research community are heavily in the other direction.

In response to this negative attitude toward "popularization," we can only ask that scientists and engineers try to act in a thoroughly professional fashion when judging a given proposal–which is to say, that they pay scrupulous attention to the scientific and technical facts. This means judging the validity of technical ideas based on their factual merits, and not on their (occasionally readable) style of presentation, or on the emotional response they may stir up. Nanotechnology matters to people, and they deserve to know about its flesh-and-blood human consequences, its impact on society and nature. We urge scientifically inclined readers to consult the Technical Bibliography at the end of the book, and then to point out any major errors they can find in the technical papers on this topic. We urge nonscientists who encounter scientifically knowledgeable critics to ask for specific, technical criticisms. We'll discuss some of the criticisms made to date in Chapter 3. Years of discussion with scientists and engineers—in public, in private, at conferences, and through the press—indicate that the case for nanotechnology is solid. Japanese and European industry, government, and academic researchers are forging ahead on the road to nanotechnology, and more and more U.S. research is applicable. Some researchers have even begun to call it an obvious goal.

Words that Block Thinking

Americans, so often in the forefront of science and technology, have a curious difficulty in thinking about the future. Language seems to have something to do with it.

If something sounds futurelike, we call it "futuristic." If that doesn't stop the conversation, we say that it "sounds like science fiction." These descriptions remind listeners of laughable 1950s fantasies like rockets to the Moon, video telephones, ray guns, robots, and the like. Of course, all these became real in the 1960s, because the science wasn't fiction. Today, we can see not only how to build additional science-fictional devices, but–more important, for better or worse–how to make them cheap and abundant. We need to think about the future, and name-calling won't help.

A serious problem. (Calvin and Hobbes. Copyright (R) 1989 by Universal Press Syndicate. Reprinting with permission. All rights reserved)

Curiously, the Japanese language seems to lack a disparaging word for "futurelike." Ideas for future technologies may be termed mirai no ("of the future," a hope or a goal), shõrai-teki (an expected development, which might be twenty years away), or kûsõ no ("imaginary" only, because contrary to physical law or economics). To think about the future, we need to distinguish mirai no and shõrai-teki, like nanotechnology, from mere kûsõ no, like antigravity boots.

A final objection is the claim that there's no point in trying to think about the future, because it is all too complex and unpredictable. This is too sweeping, but has more than a little truth. It deserves a considered response.

The Difficulty of Looking Forward

If our future will include nanotechnology, then it would be useful to understand what it can do, so that we can make more sensible plans for our families, careers, companies, and society. But many intelligent people will respond that understanding is impossible, that the future is just too unpredictable. This depends, of course, on what you're trying to predict:

The weather a month from now? Forget it; weather is too chaotic.

The position of the Moon a century from now? Easy; the Moon's orbit is like clockwork.

Which personal-computer company will lead twenty years from now? Good luck; major companies today didn't even exist twenty years ago.

That personal computers will become enormously more powerful? A virtual certainty.

And so on. If you aim to say something sensible about the future of technology, the trick is to ask the right questions and to avoid the standard pitfalls. In his book Megamistakes: Forecasting and the Myth of Rapid Technological Change, Steven Schnaars surveys these pitfalls and their effects on past predictions. Borrowing and adapting some of his generalizations, here are our suggestions for how to blunder into a Megamistake in forecasting:

In looking at what to expect from nanotechnology—or any technology—all of these must be avoided, since they can lead to some grand absurdities. In a classic demonstration of the first error, someone once concocted the notion that pills would someday replace food. But people need energy to live, and energy means calories, which means fuel, which takes up room. To subsist on pills, you'd need to gobble them by the fistful. This would be like eating a tasteless kibbled dog food, which was hardly the idea. In short, the pills-for-food prediction ignored the scientific facts. In a similar vein, we once heard promises of a cure for cancer—but this was based on a guess about scientific facts, a guess that "cancer" was in some sense a single disease, which might have a single point of vulnerability and a single cure. This guess was wrong, and progress against cancer has been slow.

Earlier, we presented a scenario that includes the routine cure of a cancer using nanotechnology. This scenario takes account of the currently known facts: Cancers differ, but each kind can be recognized by its molecular markers. Molecular machines can recognize molecular markers, and so can be primed to recognize and destroy specific kinds of cancer cells as they turn up. We will explore medical applications of nanotechnology further in Chapter 10.

Even nanotechnology can't cram a meal into a pill, but this is just as well. The pills-for-food proposal didn't just ignore the facts, it also ignored what people want—things like dinner conversation and novel ethnic cuisines. Magazines once promised cities beneath the sea, but who wants to live in the ultimate damp, chilly climate? California and the Sunbelt have somehow proved more popular. And again, we were promised talking cars, but after giving them a try, people prefer luxury cars from companies that promise silence.

Many human wants are easy to predict, because they are old and stable: People want better medical care, housing, consumer goods, transportation, education, and so forth, preferably at lower costs, with greater safety, in a cleaner environment. When our limited abilities force us to choose better quality or lower cost or greater safety or a cleaner environment, decisions become sticky. Molecular manufacturing will allow a big step in the direction of better quality and lower costs and increased safety and a cleaner environment. (Choices of how much of each will remain.) There is no existing market demand for "nanotechnology," as such, but a great demand for what it can do.

Neglecting costs has also been popular among prognosticators: Building cities under the sea would be expensive, with few benefits. Building in space has more benefits, but would be far more expensive, using past or present technologies. Many bold projections gather dust on shelves because development or manufacturing costs are too high. Some examples include personal robots, flying cars, and Moon colonies–they still sound more like 1950s science fiction than practical possibilities, and cost is one major reason.

Molecular manufacturing is, in part, about cost reduction. As mentioned above, molecular machines in nature make things cheaply, like wood, potatoes, and hay. Trees are more complex than spacecraft, so why should spacecraft stay more expensive? Gordon Tullock, professor of economics and political science at the University of Arizona, says of molecular nanotechnology, "Its economic effect is that we will all be much richer." The prospect of building sophisticated products for the price of potatoes gives reason to pull a lot of old projections down from the shelf. We hope you won't mind the dust when we brush them off for a fresh look.

Even staying within the bounds of known science, focusing on things people want, and paying attention to costs, it's still hard to pick a specific winner. Technology development is like a horse race: everyone knows that some horse will win, but knowing which horse is harder (and worth big bucks). Both corporate managers betting money and researchers betting their careers have to play this game, and they often lose. A technology may work, provide something useful, and be less expensive than last year's alternative, yet still be clobbered in the market by something unexpected but better. To know which technologies will win, you'd have to know all the alternatives, whether they've been invented yet or not. Good luck!

We won't try to play that game here. "Nanotechnology" (like "modern industry") describes a huge range of technologies. Nonetheless, nanotechnology in one form or another is a monumentally obvious idea: it will be the culmination of an age-old trend toward more thorough control of the structure of matter. Predicting that some form of nanotechnology will win most technology races is like predicting that some horse will win a horse race (as opposed to, say, a dachshund). A technology based on thorough control of the structure of matter will almost always beat one based on crude control of the structure of matter. Other technologies have already won races in the literal sense of being first. Few, however, will win in the sense of being best.

Exploratory Engineering

Studies of nanotechnology are today in the exploratory engineering phase, and just beginning to move into engineering development. The basic idea of exploratory engineering is simple: combine engineering principles with known scientific facts to form a picture of future technological possibilities. Exploratory engineering looks at future possibilities to help guide our attention in the present. Science–especially molecular science–has moved fast in recent decades. There is no need to wait for more scientific breakthroughs in order to make engineering breakthroughs in nanotechnology.


The outer tagged rectangle represents the set of all technologies permitted by the laws of nature, whether they exist or not, whether they have been imagined or not. Within this set are those technologies that are manufacturable with today's technology, and those that are understandable with today's science. Textbooks teach what is understandable (hence teachable) and manufacturable (hence immediately practical). Practical engineers achieve many successes by cut-and-try methods and put them into production. Exploratory engineers study what will become practical as manufacturing abilities expand to embrace more of the possible.

The above illustration shows how exploratory engineering relates to more familiar kinds of engineering. Each works within the limits of the possible, which are set by the known and unknown laws of nature. The most familiar kind is the engineering taught in schools: this "textbook engineering" covers technologies that can be both understood (so they can be taught) and manufactured (so they can be used). Bridge-building and gearbox design fall in this category. Other technologies, however, can be manufactured but aren't understood—any engineer can give examples of things that work when similar things don't, and for no obvious reason. But as long as they do work, and work consistently, they can be used with confidence. This is the world of "cut-and-try engineering," so important to modern industry. Bearing lubrication, adhesives, and many manufacturing technologies advance by cut-and-try methods.

Exploratory engineering covers technologies that can be understood but not manufactured–yet. Technologies in this category are also familiar to engineers, although normally they design such things only for fun. So much is known about mechanics, thermodynamics, electronics, and so forth that engineers can often calculate what something will do, just from a description of it. Yet there is no reason why everything that can be correctly described must be manufacturable—the constraints are different. Exploratory engineering is as simple as textbook engineering, but neither military planners nor corporate executives see much profit in it, so it hasn't received much attention.

The concepts of molecular manufacturing and molecular nanotechnology are straightforward results of exploratory-engineering research applied to molecular systems. As we observed above, the basic ideas could have been worked out forty years ago, if anyone had bothered. Naturally enough, both scientists and engineers were preoccupied with more immediate concerns. But now, with the threshold of nanotechnology approaching, attention is beginning to focus on where the next steps lead.

Nanotechnology seems to be where the world is headed if technology keeps advancing, and competition practically guarantees that advances will continue. It will open both a huge range of opportunities for benefit and a huge range of opportunities for misuse. We will paint scenarios to give a sense of the prospects and possibilities, but we don't offer predictions of what will happen. Actual human choices and blunders will depend on a range of factors and alternatives beyond what we can hope to anticipate.






For ongoing nanotechnology
information, Register for a
Free Electronic Membership
To help prepare
for nanotechnology
Make a Donation to Support Foresight
To play a key role
in Foresight's efforts
Become a Senior Associate

Foresight materials on the Web are ©1986-1997 Foresight Institute. All rights reserved.
Last updated 14September97. The URL of this document is: http://www.foresight.org/UTF/Unbound_LBW/chapt_1.html
Send requests for information about Foresight Institute activities and membership to inform@foresight.org.
Send comments and questions about material on this web site and reports of errors to webmaster@foresight.org.